Math_BigInteger()
__clone()
__sleep()
__wakeup()
_add()
_array_repeat()
_barrett()
_base256_lshift()
_base256_rshift()
_baseSquare()
_bytes2int()
_compare()
_divide_digit()
_int2bytes()
_karatsuba()
_karatsubaSquare()
_lshift()
_make_odd()
_mod2()
_modInverse67108864()
_montgomery()
_montgomeryMultiply()
_multiply()
_multiplyLower()
_multiplyReduce()
_normalize()
_prepMontgomery()
_prepareReduce()
_reduce()
_regularBarrett()
_regularMultiply()
_rshift()
_slidingWindow()
_square()
_squareReduce()
_subtract()
_trim()
abs()
bitwise_leftRotate()
bitwise_rightRotate()
copy()
equals()
extendedGCD()
gcd()
multiply()
powMod()
random()
setPrecision()
setRandomGenerator()
$bitmask
$generator
$hex
$is_negative
$precision
$value
Pure-PHP arbitrary precision integer arithmetic library.
Supports base-2, base-10, base-16, and base-256 numbers.
author | Jim Wigginton |
---|---|
version | 1.0.0RC4 |
access | public |
package | Math_BigInteger |
Math_BigInteger(\optional $x, \optional $base) : \Math_BigInteger
base-256) to BigIntegers.
If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using two's compliment. The sole exception to this is -10, which is treated the same as 10 is.
Here's an example:
toString(); // outputs 50
?>
access | public |
---|
\optional
base-10 number or base-$base number if $base set.
\optional
integer $base
__clone() : \Math_BigInteger
Although you can call Math_BigInteger::__toString() directly in PHP5, you cannot call Math_BigInteger::__clone() directly in PHP5. You can in PHP4 since it's not a magic method, but in PHP5, you have to call it by using the PHP5 only syntax of $y = clone $x. As such, if you're trying to write an application that works on both PHP4 and PHP5, call Math_BigInteger::copy(), instead.
access | public |
---|---|
see | \global\copy() |
__sleep()
Will be called, automatically, when serialize() is called on a Math_BigInteger object.
see | \global\__wakeup() |
---|---|
access | public |
__wakeup()
Will be called, automatically, when unserialize() is called on a Math_BigInteger object.
see | \global\__sleep() |
---|---|
access | public |
_add(Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative) : Array
access | private |
---|
Array
Boolean
Array
Boolean
Array
_array_repeat(\$input $input, \$multiplier $multiplier) : Array
access | private |
---|
\$input
Array
\$multiplier
mixed
Array
_base256_lshift(\$x $x, \$shift $shift) : String
Shifts binary strings $shift bits, essentially multiplying by 2**$shift.
access | private |
---|
\$x
String
\$shift
Integer
String
_base256_rshift(\$x $x, \$shift $shift) : String
Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder.
access | private |
---|
\$x
String
\$shift
Integer
String
_baseSquare(Array $value) : Array
Squaring can be done faster than multiplying a number by itself can be. See HAC 14.2.4 / MPM 5.3 for more information.
access | private |
---|
Array
Array
_bytes2int(String $x) : Integer
access | private |
---|
String
Integer
_compare(Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative) : Integer
see | \global\compare() |
---|---|
access | private |
Array
Boolean
Array
Boolean
Integer
_divide_digit(Array $dividend, Array $divisor) : Array
abc / x = a00 / x + b0 / x + c / x
access | private |
---|
Array
Array
Array
_int2bytes(Integer $x) : String
access | private |
---|
Integer
String
_karatsuba(Array $x_value, Array $y_value) : Array
See Karatsuba algorithm and MPM 5.2.3.
access | private |
---|
Array
Array
Array
_karatsubaSquare(Array $value) : Array
_lshift(Integer $shift)
Shifts BigInteger's by $shift bits.
access | private |
---|
Integer
_make_odd()
If the current number is odd it'll be unchanged. If it's even, one will be added to it.
see | \global\randomPrime() |
---|---|
access | private |
_mod2($n) : \Math_BigInteger
Calculates $x%$n, where $n = 2**$e, for some $e. Since this is basically the same as doing $x & ($n-1), we'll just use this function as a wrapper for doing that.
see | \global\_slidingWindow() |
---|---|
access | private |
Math_BigInteger
_modInverse67108864(Array $x) : Integer
67108864)
Based off of the bnpInvDigit function implemented and justified in the following URL:
http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js
The following URL provides more info:
http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85
As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to 40 bits, which only 64-bit floating points will support.
Thanks to Pedro Gimeno Fortea for input!
see | \global\_montgomery() |
---|---|
access | private |
Array
Integer
_montgomery(Array $x, Array $n) : Array
($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n. MPM 6.3 provides insights on how this can be improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function to work correctly.
see | \global\_prepMontgomery() |
---|---|
see | \global\_slidingWindow() |
access | private |
Array
Array
Array
_montgomeryMultiply(Array $x, Array $y, Array $m) : Array
Interleaves the montgomery reduction and long multiplication algorithms together as described in HAC 14.36
see | \global\_prepMontgomery() |
---|---|
see | \global\_montgomery() |
access | private |
Array
Array
Array
Array
_multiply(Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative) : Array
access | private |
---|
Array
Boolean
Array
Boolean
Array
_multiplyLower(Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative, $stop) : Array
If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved.
see | \global\_regularBarrett() |
---|---|
access | private |
Array
Boolean
Array
Boolean
Array
_multiplyReduce(Array $x, Array $y, Array $n, Integer $mode) : Array
see | \global\_slidingWindow() |
---|---|
access | private |
Array
Array
Array
Integer
Array
_normalize($result) : \Math_BigInteger
Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
see | \global\_trim() |
---|---|
access | private |
Math_BigInteger
_prepMontgomery(Array $x, Array $n) : Array
see | \global\_montgomery() |
---|---|
see | \global\_slidingWindow() |
access | private |
Array
Array
Array
_prepareReduce(Array $x, Array $n, Integer $mode) : Array
see | \global\_slidingWindow() |
---|---|
access | private |
Array
Array
Integer
Array
_reduce(Array $x, Array $n, Integer $mode) : Array
For most $modes this will return the remainder.
see | \global\_slidingWindow() |
---|---|
access | private |
Array
Array
Integer
Array
_regularBarrett(Array $x, Array $n) : Array
For numbers with more than four digits Math_BigInteger::_barrett() is faster. The difference between that and this is that this function does not fold the denominator into a smaller form.
see | \global\_slidingWindow() |
---|---|
access | private |
Array
Array
Array
_regularMultiply(Array $x_value, Array $y_value) : Array
Modeled after 'multiply' in MutableBigInteger.java.
access | private |
---|
Array
Array
Array
_rshift(Integer $shift)
Shifts BigInteger's by $shift bits.
access | private |
---|
Integer
_slidingWindow(\Math_BigInteger $e, \Math_BigInteger $n, Integer $mode) : \Math_BigInteger
Based on HAC 14.85 / MPM 7.7. In a departure from those algorithims, however, this function performs a modular reduction after every multiplication and squaring operation. As such, this function has the same preconditions that the reductions being used do.
access | private |
---|
Integer
_square(Array $x) : Array
access | private |
---|
Array
Array
_squareReduce(Array $x, Array $n, Integer $mode) : Array
see | \global\_slidingWindow() |
---|---|
access | private |
Array
Array
Integer
Array
_subtract(Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative) : Array
access | private |
---|
Array
Boolean
Array
Boolean
Array
bitwise_leftRotate(Integer $shift) : \Math_BigInteger
Instead of the top x bits being dropped they're appended to the shifted bit string.
access | public |
---|
Integer
bitwise_rightRotate(Integer $shift) : \Math_BigInteger
Instead of the bottom x bits being dropped they're prepended to the shifted bit string.
access | public |
---|
Integer
copy() : \Math_BigInteger
PHP5 passes objects by reference while PHP4 passes by value. As such, we need a function to guarantee that all objects are passed by value, when appropriate. More information can be found here:
http://php.net/language.oop5.basic#51624
access | public |
---|---|
see | \global\__clone() |
equals(\Math_BigInteger $x) : Boolean
If you need to see if one number is greater than or less than another number, use Math_BigInteger::compare()
access | public |
---|---|
see | \global\compare() |
Boolean
extendedGCD($n)
gcd(\Math_BigInteger $n) : \Math_BigInteger
Say you have 693 and 609. The GCD is 21.
Here's an example:
extendedGCD($b);
echo $gcd->toString() . "\r\n"; // outputs 21
?>
access | public |
---|
multiply(\Math_BigInteger $x) : \Math_BigInteger
Here's an example:
multiply($b);
echo $c->toString(); // outputs 200
?>
access | public |
---|
powMod(\Math_BigInteger $e, \Math_BigInteger $n) : \Math_BigInteger
Alias for Math_BigInteger::modPow()
access | public |
---|
random(\optional $min, \optional $max) : \Math_BigInteger
access | public |
---|
\optional
Integer $min
\optional
Integer $max
setPrecision($bits) : \Math_BigInteger
Some bitwise operations give different results depending on the precision being used. Examples include left shift, not, and rotates.
access | public |
---|
setRandomGenerator(\optional $generator)
$generator should be the name of a random generating function whose first parameter is the minimum value and whose second parameter is the maximum value. If this function needs to be seeded, it should be seeded prior to calling Math_BigInteger::random() or Math_BigInteger::randomPrime()
If the random generating function is not explicitly set, it'll be assumed to be mt_rand().
see | \global\random() |
---|---|
see | \global\randomPrime() |
access | public |
\optional
String $generator
$bitmask
see | \global\setPrecision() |
---|---|
access | private |
$generator
see | \global\setRandomGenerator() |
---|---|
access | private |
$hex : String
If the bcmath or gmp extensions are installed $this->value will be a non-serializable resource, hence the need for a variable that'll be serializable regardless of whether or not extensions are being used. Unlike $this->value, however, $this->hex is only calculated when $this->__sleep() is called.
see | \global\__sleep() |
---|---|
see | \global\__wakeup() |
access | private |
$is_negative : Boolean
access | private |
---|
$precision
see | \global\setPrecision() |
---|---|
access | private |
$value : Array
access | private |
---|